Blogs

Blogs

Latest Insights in Technology

  • Video Friday: Robot Boxing
    by Evan Ackerman on April 18, 2025 at 4:00 pm

    Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.RoboSoft 2025: 23–26 April 2025, LAUSANNE, SWITZERLANDICUAS 2025: 14–17 May 2025, CHARLOTTE, NCICRA 2025: 19–23 May 2025, ATLANTA, GALondon Humanoids Summit: 29–30 May 2025, LONDONIEEE RCAR 2025: 1–6 June 2025, TOYAMA, JAPAN2025 Energy Drone & Robotics Summit: 16–18 June 2025, HOUSTON, TXRSS 2025: 21–25 June 2025, LOS ANGELESETH Robotics Summer School: 21–27 June 2025, GENEVAIAS 2025: 30 June–4 July 2025, GENOA, ITALYICRES 2025: 3–4 July 2025, PORTO, PORTUGALIEEE World Haptics: 8–11 July 2025, SUWON, KOREAIFAC Symposium on Robotics: 15–18 July 2025, PARISRoboCup 2025: 15–21 July 2025, BAHIA, BRAZILRO-MAN 2025: 25–29 August 2025, EINDHOVEN, THE NETHERLANDSCLAWAR 2025: 5–7 September 2025, SHENZHENCoRL 2025: 27–30 September 2025, SEOULIEEE Humanoids: 30 September–2 October 2025, SEOULWorld Robot Summit: 10–12 October 2025, OSAKA, JAPANIROS 2025: 19–25 October 2025, HANGZHOU, CHINAEnjoy today’s videos! Let’s step into a new era of Sci-Fi, join the fun together! Unitree will be livestreaming robot combat in about a month, stay tuned![ Unitree ]A team of scientists and students from Delft University of Technology in the Netherlands (TU Delft) has taken first place at the A2RL Drone Championship in Abu Dhabi - an international race that pushes the limits of physical artificial intelligence, challenging teams to fly fully autonomous drones using only a single camera. The TU Delft drone competed against 13 autonomous drones and even human drone racing champions, using innovative methods to train deep neural networks for high-performance control.[ TU Delft ]RAI’s Ultra Mobile Vehicle (UMV) is learning some new tricks![ RAI Institute ]With 28 moving joints (20 QDD actuators + 8 servo motors), Cosmo can walk with its two feet with a speed of up to 1 m/s (0.5 m/s nominal) and balance itself even when pushed. Coordinated with the motion of its head, fingers, arms and legs, Cosmo has a […]

  • Bell Labs Turns 100, Plans to Leave Its Old Headquarters
    by Dina Genkina on April 18, 2025 at 1:00 pm

    This year, Bell Labs celebrates its hundredth birthday. In a centennial celebration held last week at the Murray Hill, New Jersey campus, the lab’s impressive technological history was celebrated with talks, panels, demos, and over a half dozen gracefully aging Nobel laureates. During its impressive 100 year tenure, Bell Labs scientists invented the transistor, laid down the theoretical grounding for the digital age, discovered radio astronomy which led to the first evidence in favor of the big bang theory, contributed to the invention of the laser, developed the Unix operating system, invented the charge-coupled device (CCD) camera, and many more scientific and technological contributions that have earned Bell Labs ten Noble prizes and five Turing awards.“I normally tell people, this is the ‘Bell Labs invented everything’ tour,” said Nokia Bell Labs archivist Ed Eckert as he led a tour through the lab’s history exhibit.The lab is smaller than it once was. The main campus in Murray Hill, New Jersey appears like a bit of a ghost town, with empty cubicles and offices lining the halls. Now, it’s planning a move to a smaller facility in New Brunswick, New Jersey sometime in 2027. In its heyday, Bell Labs boasted around 6,000 workers at the Murray Hill location. Although that number has now dwindled to about 1,000, more work at other locations around the worldThe Many Accomplishments of Bell LabsDespite its somewhat diminished size, Bell Labs, now owned by Nokia, is alive and kicking.“As Nokia Bell Labs, we have a dual mission,” says Bell Labs president Peter Vetter. “On the one hand, we need to support the longevity of the core business. That is networks, mobile networks, optical networks, the networking at large, security, device research, ASICs, optical components that support that network system. And then we also have the second part of the mission, which is help the company grow into new areas.”Some of the new areas for growth were represented in live demonstrations at the centennial.A team at Bell Labs is working on establishing the first cellular network on the moon. In February, Intuitive Machines sent their second lunar mission, […]

  • The Future of AI and Robotics Is Being Led by Amazon’s Next-Gen Warehouses
    by Dexter Johnson on April 17, 2025 at 11:09 am

    This is a sponsored article brought to you by Amazon.The cutting edge of robotics and artificial intelligence (AI) doesn’t occur just at NASA, or one of the top university labs, but instead is increasingly being developed in the warehouses of the e-commerce company Amazon. As online shopping continues to grow, companies like Amazon are pushing the boundaries of these technologies to meet consumer expectations.Warehouses, the backbone of the global supply chain, are undergoing a transformation driven by technological innovation. Amazon, at the forefront of this revolution, is leveraging robotics and AI to shape the warehouses of the future. Far from being just a logistics organization, Amazon is positioning itself as a leader in technological innovation, making it a prime destination for engineers and scientists seeking to shape the future of automation.Amazon: A Leader in Technological InnovationAmazon’s success in e-commerce is built on a foundation of continuous technological innovation. Its fulfillment centers are increasingly becoming hubs of cutting-edge technology where robotics and AI play a pivotal role. Heath Ruder, Director of Product Management at Amazon, explains how Amazon’s approach to integrating robotics with advanced material handling equipment is shaping the future of its warehouses.“We’re integrating several large-scale products into our next-generation fulfillment center in Shreveport, Louisiana,” says Ruder. “It’s our first opportunity to get our robotics systems combined under one roof and understand the end-to-end mechanics of how a building can run with incorporated autonomation.” Ruder is referring to the facility’s deployment of its Automated Storage and Retrieval Systems (ASRS), called Sequoia, as well as robotic arms like “Robin” and “Cardinal” and Amazon’s proprietary autonomous mobile robot, “Proteus”.Amazon has already deployed “Robin”, a robotic arm that sorts packages for outbound shipping by transferring packages from conveyors to mobile robots. This system is already in use across various Amazon fulfillment centers and has completed over three billion successful package moves. […]

  • Future Chips Will Be Hotter Than Ever
    by James Myers on April 16, 2025 at 1:30 pm

    For over 50 years now, egged on by the seeming inevitability of Moore’s Law, engineers have managed to double the number of transistors they can pack into the same area every two years. But while the industry was chasing logic density, an unwanted side effect became more prominent: heat. In a system-on-chip (SoC) like today’s CPUs and GPUs, temperature affects performance, power consumption, and energy efficiency. Over time, excessive heat can slow the propagation of critical signals in a processor and lead to a permanent degradation of a chip’s performance. It also causes transistors to leak more current and as a result waste power. In turn, the increased power consumption cripples the energy efficiency of the chip, as more and more energy is required to perform the exact same tasks. The root of the problem lies with the end of another law: Dennard scaling. This law states that as the linear dimensions of transistors shrink, voltage should decrease such that the total power consumption for a given area remains constant. Dennard scaling effectively ended in the mid-2000s at the point where any further reductions in voltage were not feasible without compromising the overall functionality of transistors. Consequently, while the density of logic circuits continued to grow, power density did as well, generating heat as a by-product. As chips become increasingly compact and powerful, efficient heat dissipation will be crucial to maintaining their performance and longevity. To ensure this efficiency, we need a tool that can predict how new semiconductor technology—processes to make transistors, interconnects, and logic cells—changes the way heat is generated and removed. My research colleagues and I at Imec have developed just that. Our simulation framework uses industry-standard and open-source electronic design automation (EDA) tools, augmented with our in-house tool set, to rapidly explore the interaction between semiconductor technology and the systems built with it. The results so far are inescapable: The thermal challenge is growing with each new technology node, and we’ll need new solutions, including new ways of designing chips and […]

  • Navigating the Angstrom Era
    by Wiley on April 16, 2025 at 1:22 pm

    This is a sponsored article brought to you by Applied Materials.The semiconductor industry is in the midst of a transformative era as it bumps up against the physical limits of making faster and more efficient microchips. As we progress toward the “angstrom era,” where chip features are measured in mere atoms, the challenges of manufacturing have reached unprecedented levels. Today’s most advanced chips, such as those at the 2nm node and beyond, are demanding innovations not only in design but also in the tools and processes used to create them.At the heart of this challenge lies the complexity of defect detection. In the past, optical inspection techniques were sufficient to identify and analyze defects in chip manufacturing. However, as chip features have continued to shrink and device architectures have evolved from 2D planar transistors to 3D FinFET and Gate-All-Around (GAA) transistors, the nature of defects has changed. Defects are often at scales so small that traditional methods struggle to detect them. No longer just surface-level imperfections, they are now commonly buried deep within intricate 3D structures. The result is an exponential increase in data generated by inspection tools, with defect maps becoming denser and more complex. In some cases, the number of defect candidates requiring review has increased 100-fold, overwhelming existing systems and creating bottlenecks in high-volume production.Applied Materials’ CFE technology achieves sub-nanometer resolution, enabling the detection of defects buried deep within 3D device structures.The burden created by the surge in data is compounded by the need for higher precision. In the angstrom era, even the smallest defect — a void, residue, or particle just a few atoms wide — can compromise chip performance and the yield of the chip manufacturing process. Distinguishing true defects from false alarms, or “nuisance defects,” has become increasingly difficult. Traditional defect review systems, while effective in their time, are struggling to keep pace with the demands of modern chip manufacturing. The industry is at an inflection point, where the ability to detect, classify, and analyze […]

Exploring the Future of Artificial Intelligence